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Localizing a Robot in a Hallway
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 consider a robot moving down a hall equipped with a sensor 

that measures the presence of a door beside the robot

 the pose of the robot is simply its location on a line down the 

middle of the hall

 the robot starts out knowing how far down the hallway it is located

 Kalman-like filters require an initial estimate of the location

 robot has a map of the hallway showing it where the doors are



Kalman Localization
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 robot starts out knowing how far down the hallway it is 

located



Kalman Localization
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 as the robot moves forward, its uncertainty in its location 

shifts and grows according to its motion model



Grid Localization
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 when it reaches a door that can be uniquely identified, it can 

incorporate this measurement into its state estimate

measurement liklihood

updated state estimate



Grid Localization
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 as the robot moves forward, its uncertainty in its location 

shifts and grows according to its motion model



Gaussian Assumption
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 Kalman-like filters assume that quantities can be represented 

accurately as a mean + covariance

 e.g., the state is a random variable with Gaussian distribution

 e.g., measurements are random variables with Gaussian distribution



Gaussian Assumption
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 assumption is ok here

EKF UKF



Gaussian Assumption
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 assumption is (possibly) not ok here

EKF UKF



Gaussian Assumption
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 assumption is not ok here (robot does not know which door 

it is measuring)

p(x | robot is sensing a door)



Non-parametric Filters
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 non-parametric filters do not rely on a fixed functional form 

of the state posterior

 instead, they represent the posterior using a finite number of 

values each roughly corresponding to a region (or point) in 

state space

 two variations

1. partition state space into a finite number of regions

 e.g.,  histogram filter

2. represent the posterior using a finite number of samples 

 e.g., particle filter



Histogram
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bins

“table of frequencies”



Histogram Filter
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 histogram filter uses a histogram to represent probability 

densities

 in its simplest form, the domain of the densities is divided into 

subdomains of equal size with each subdomain being a bin of 

the histogram

 the value stored in the bin is proportional to the density



Histogram Filter
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 suppose the domain of the state x is [-5, 5] and that x is a 

random variable with Gaussian density (mean 0, variance 1)

 using bins of width w = 0.1 we can represent the density using the 

following histogram 
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Histogram Filter
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 suppose we want to pass the density through some non-linear 

function

3 1)(  xxf

1,0 

reminder: this is the solution obtained

by passing 500,000 random samples

through f (x), not the result of using a

histogram filter



Histogram Filter
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1. create an empty histogram h with bins xc,i

2. for each i

1. yi = f (xc,i)

2. ni = p(xc,i)

3. find the bin bk that yi belongs in 

4. h (bk) = h (bk) + ni



A Simple Implementation
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dx = 0.05;                % width of x bins

xc = -5:dx:5;             % bin centers x

y = nthroot(xc – 1, 3);   % y = f(xc)

n = normpdf(xc, 0, 1);    % n = p(xc)

dy = 0.1;                 % width of y bins

yc = -2:dy:2;             % bin centers y

h = zeros(size(yc));      % histogram

for i = 1:length(y)

bk = find(y(i) > yc – (dy / 2) & y(i) < yc + (dy / 2));

h(bk) = h(bk) + n(i);

end

bar(yc, h, 1);



Histogram Filter
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 alternatively

1. create an empty histogram h with bins xc,i

2. for each bin bk
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Histogram Filter
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3 1)(  xxf
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Grid Localization
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 grid localization uses a histogram filter over a grid 

decomposition of pose space

 consider a robot moving down a hall equipped with a sensor 

that measures the presence of a door beside the robot

 the pose of the robot is simply its location on a line down the 

middle of the hall

 the robot starts out having no idea how far down the hallway it is 

located

 robot has a map of the hallway showing it where the doors are

 grid decomposes the hallway into a finite set of non-overlapping 

intervals

 e.g., every 50cm would yield intervals [0, 0.5], (0.5, 1], (1, 1.5], …



Grid Localization
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 the robot starts out having no idea how far down the hallway 

it is located

 the histogram of its state density is uniform



Grid Localization
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 because the robot is beside a door, it has a measurement

 it can incorporate this measurement into its state estimate

measurement liklihood

updated state estimate



Grid Localization
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 as the robot moves forward, its uncertainty in its location 

shifts and grows according to its motion model



Grid Localization
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 when it reaches a door, it can incorporate this measurement 

into its state estimate

 it now has a pretty good idea where it is in the hallway

measurement liklihood

updated state estimate



Grid Localization
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 as the robot moves forward, its uncertainty in its location 

shifts and grows according to its motion model



Grid Localization Algorithm
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1. algorithm_grid_localization(                     )

2. for all k do 

3. motion_model(                             )

4. measurement_model(                    )

5. endfor

6. return  
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